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A model is developed for turbulent natural convection in boundary layers formed
next to isothermal vertical surfaces. A scaling analysis shows that the flow can be
described by plume equations for an outer turbulent region coupled to a resolved
near-wall laminar flow. On the laboratory scale, the inner layer is dominated by its
own buoyancy and the Nusselt number scales as the one-third power of the Rayleigh
number (Nu ∝ Ra1/3

z ). This gives a constant heat flux, consistent with previous
experimental and theoretical studies. On larger geophysical scales the buoyancy is
strongest in the outer layer and the laminar layer is driven by the shear imposed on
it. The predicted heat transfer correlation then has the Nusselt number proportional
to the one-half power of Rayleigh number (Nu ∝ Ra1/2

z ) so that a larger heat flux is
predicted than might be expected from an extrapolation of laboratory-scale results.
The criteria for transitions between flow regimes are consistent with a hierarchy of
instabilities of the near-wall laminar flow, with a buoyancy-driven instability operating
on the laboratory scale and a shear-driven instability operating on geophysical scales.

1. Introduction
When a heated, or cooled, vertical plate is introduced into an environment of

different temperature, the resulting buoyancy force can drive a predominantly vertical
flow adjacent to the plate. This phenomenon is demonstrated by air rising next to a
heated radiator or by the motion of water next to a near-vertical ice surface in a polar
ocean. This problem has been well studied on the laboratory scale but it is unknown
whether these results can be extrapolated to geophysical scales. For example, large
tabular icebergs or glacier termini can extend several hundred metres below the surface
of oceans or lakes and their melt rate is controlled, in part, by the heat supplied to the
ice–water interface. We need an accurate prediction of the heat flux qw from isothermal
surfaces on geophysical scales in order to determine the lifetime of such ice features.

The evolution of heat flux with distance z from the leading edge of a vertical plate
is typically described using the dimensionless local Nusselt number

Nuz =
qwz

ρ∞cpκ�T
, (1.1)

where �T denotes the temperature difference between plate and ambient, while ρ∞,
cp and κ denote ambient fluid density, specific heat capacity and thermal diffusivity
respectively. Ostrach (1952) presented similarity solutions of the boundary layer
equations for laminar flow, and Kuiken (1968) produced an asymptotic breakdown
to elucidate the dominant dynamical balances in the limit of large Prandtl number.
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The appropriate heat flux variation is found to be

Nuz ∝ Ra1/4
z , (1.2)

where the local Rayleigh number is defined as

Raz = g′z3/κν, (1.3)

ν is the kinematic viscosity of the fluid, and

g′ = g (ρ∞ − ρw) /ρ∞ (1.4)

is the reduced gravity based on density differences between fluid at the ambient and
wall temperatures. This gives a heat flux variation qw ∝ z−1/4, decreasing with distance
from the leading edge.

For longer surfaces, the flow develops an instability (Nachtsheim 1963; Hieber &
Gebhart 1971) and eventually becomes turbulent at a sufficiently large distance from
the leading edge. Studies of the instability and the resultant turbulent flow have
been summarized by Papailiou (1991). Laboratory-based experimental studies have
suggested that the turbulent heat flux is described by

Nuz ∝ Ra1/3
z (1.5)

for moderate z (e.g. Tsuji & Nagano 1988a), which gives a heat flux independent of
z over the turbulent region.

There is no formal theoretical solution for turbulent flow. George & Capp (1979)
and Hölling & Herwig (2005) attempted to model the flow using asymptotic and
dimensional arguments with an inner viscous sublayer, intermediate buoyant layer and
an outer inertial region and recovered the constant-heat-flux scaling. An alternative
approach has been to define an eddy viscosity to model turbulent Reynolds stresses,
and an eddy diffusivity to model turbulent heat flux. Solutions can then be found to the
resulting advection–diffusion equation. Josberger & Martin (1981) found Nu ∝ Ra1/4

z

close to the transition region using eddy diffusivities dependent on the laminar
similarity variable, while Ruckenstein (1998) recovered the one-third power law using
a scaling argument with eddy diffusivities dependent on distance from the wall.
However, Tsuji & Nagano (1988 b) had previously shown that the eddy viscosity
required to explain their experimental results would be negative near to the wall,
which is physically disturbing.

There are no experimental studies relevant to the larger geophysical scales. We
present a model that suggests the possibility of a second transition in the flow, which
may be appropriate to these larger geophysical length scales and gives rise to a differ-
ent dependence between Nusselt and Rayleigh numbers. The asymptotic limit of our
model, beyond the second transition, is consistent with previous ad hoc formulations
of turbulent convective boundary layers and wall plumes. It puts these on a firmer
foundation and determines the parameter ranges in which they are appropriate.

We approach this problem by scaling the governing boundary layer equations
and developing a simplified model for a flow split into distinct dynamical regimes.
We discuss the key physical balances in § 2 and summarize the key results in each
flow regime. We find that the flow can be divided into three regions: an outer inertial
turbulent region; an intermediate turbulent viscous layer where molecular diffusivities
are important; and a further laminar conductive sublayer resolved within the inner
viscous region. The width of the conductive sublayer depends on the dominant force
balance in the inner region. If the inner layer is buoyancy-driven then the sublayer
width is given in terms of a buoyant instability criterion. Alternatively, the outer layer
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Figure 1. Schematic illustration of the dominant force balances present in each of the flow
regimes for large Pr flow. The boundary layer can be broken down into three sublayers. Viscous
forces and conduction dominate the near-wall layer. The intermediate layer is dominated by
viscous forces with heat transfer by either advection or turbulent eddy flux. The outer region is
dominated by inertia. We observe different flow regimes as the dynamical balance in each region
changes. (a) Close to the leading edge there is laminar flow, with an inner viscous–buoyancy
balance, and outer viscous–inertia balance. (b) At intermediate heights we have turbulent flow.
The laminar inner layer is buoyancy-driven, with an outer inertial turbulent flow. The laminar
inner layer width is consistent with a buoyant instability criterion. (c) At large heights we have
outer turbulent flow with a buoyancy–inertia balance. The laminar inner layer is shear-driven
and the inner layer width is consistent with a shear instability criterion. For the turbulent flow
in regions (b) and (c) W corresponds to the mean vertical velocity, with To being the mean
temperature, both averaged over the width of the outer turbulent part of the flow.

can become sufficiently buoyant so as to exert a shear that provides the dominant
forcing mechanism for the inner flow. In this case the sublayer width satisfies a shear
instability criterion. The dominant force balances are shown schematically in figure 1.

These ideas are justified in § 3 using a scaling analysis of the full boundary
layer equations to identify each of the physical balances formally. We then derive
modelled governing equations in § 4, resolving velocity and temperature fields in the
conductive sublayer and using integral balances of mass, momentum and heat across
the remainder of the flow. The model is closed in § 5 by applying conditions based on
scaling for the entrainment velocity and the shear stress and heat flux between the two
layers, giving a system of ordinary differential equations for the averaged properties
of the outer flow. This is equivalent to specifying a turbulence closure. Solutions of
these equations are presented in § 6 showing the transition between the two distinct
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turbulent regimes. Immediately after transition the inner layer is driven by buoyancy,
reproducing the constant heat flux scaling (1.5). At larger heights the buoyancy in
the outer region grows to dominate the forcing and the inner flow is driven by shear.
We show that this recovers a plume model similar to that used by Ellison & Turner
(1959) but with the heat flux linearly related to the local plume velocity and the
temperature difference from the wall. This model gives the scaling law

Nuz ∝ Ra1/2
z , (1.6)

and a heat flux that increases in proportion to z1/2.

2. Physical outline
We first describe the principal physical interpretation of our analytical results in

order to give context to the detailed analysis. The flow is driven by buoyancy, and we
obtain different flow regimes depending on the location of the dominant buoyancy
force within the boundary layer, as illustrated in figure 1.

Close to the leading edge of the heated surface (region (a) of figure 1), the flow is
laminar and well understood (Ostrach 1952; Kuiken 1968). For large Prandtl number,
the inner layer has a balance between viscous and buoyancy forces, and between
conduction and advection of heat. The temperature reaches its ambient value at the
edge of the inner layer, so that there is negligible heat transport or buoyancy in
the outer layer, where the momentum balance is between viscous and inertial forces.
Kuiken (1968) showed that the width of the inner layer scales as

δi ∝ zRa−1/4
z . (2.1)

This shows that a local Rayleigh number, based on the width of the inner layer, is

Raδi
∝ Ra1/4

z . (2.2)

The laminar boundary layer becomes unstable when the global Rayleigh number
Raz exceeds a critical value of approximately 1.4 × 105Pr2 (Hieber & Gebhart 1971).
Alternatively, we can interpret this as saying that an instability occurs when the local
Rayleigh number Raδi

exceeds a critical value of about 20Pr1/2 at some height above
the leading edge. This idea is consistent with the first turbulent regime (region (b)
of figure 1) suggested by the scaling analysis in § 3 below, in which we find that the
condition

Raδi
= constant (2.3)

determines the width of an inner laminar sublayer. This is suggestive that the width
of the inner laminar layer in this regime is controlled by a buoyant instability.

The structure of this turbulent boundary layer has been well studied in laboratory-
scale experiments. Tsuji & Nagano (1988 b) made detailed measurements of the
temperature and velocity profiles and turbulent fluxes for a boundary layer next to a
heated plate in air. These measurements show that we can consider a multi-layered
structure to the boundary layer for turbulent flow. Conduction of heat and viscous
forces dominate very close to the wall, with the turbulent eddy fluxes beginning to be-
come important as we move further from the wall. The laboratory-scale measurements
suggest buoyancy forces are important across both of these inner regions. Finally,
molecular conduction and viscous forces become small at large distances from the wall,
with advection and inertia now balancing the turbulent fluxes of heat and momentum.
These observations are also consistent with the scaling ideas of George & Capp (1979)
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Figure 2. Schematic illustration of the structure of the boundary layer. Close to the wall we
have a laminar conductive sublayer for 0 < y < δ. The outer region of the flow has width O(δo),
is fully turbulent and is dominated by inertia. We also have an intermediate viscous-turbulent
layer of width O(δi) where the flow adjusts between the near wall and outer regions. Since
δo � δi � δ, these boundary layer scales can be measured either as distance from the wall, or
from the edge of the neighbouring region. As indicated by the alternative dashed profiles in
the inner region, the flow there either exerts a shear on the outer layer, or is driven by shear
from the outer layer.

and Hölling & Herwig (2005), who identified an inner ‘constant heat flux layer’ which
was dominated by buoyancy. We show in the scaling analysis of § 3 that this multi-
layered structure can be considered as the three distinct regions shown in figure 2.

We have an inner layer of width δ near to the wall, in which heat transport
is entirely conductive and the dominant momentum balance is between laminar
viscosity and buoyancy forces.

Further from the wall, we introduce an intermediate viscous–turbulent layer, of
width O(δi). Turbulent eddy structures begin to influence the heat transfer in this
region, although viscous forces still dominate inertia.

Finally, we have an outer inertial–turbulent region of width O(δo). Molecular
transport is negligible in this region, and the vigorous turbulence keeps it relatively
well mixed, with fluid engulfed from the ambient at the edge of the layer.

With this multi-layer structure in mind, we now return to consider the development
of the turbulent flow in figure 1. We find that as z increases buoyancy spills from the
inner to the outer layer, which suggests a new possibility that the buoyancy in the
outer layer can grow to dominate the flow, as shown in region (c) of figure 1. The inner
layer is then driven by the shear exerted by the outer flow, and we find that the inner
layer width δi satisfies

Reδi
=

Wδi

ν
= constant, (2.4)

so that there is a constant local Reynolds number (rather than Rayleigh number)
characterizing the flow. This is consistent with the idea that the inner laminar sublayer
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width is controlled by a shear instability. The complete evolution of the inner layer
width is described by a hierarchy of instabilities, with the laminar criterion (2.2)
initially giving way to a buoyant instability criterion (2.3), before finally satisfying a
shear instability criterion (2.4) when the outer velocity becomes large, as depicted in
figure 1.

These physical ideas form the basis of the unified model displayed in table 1 at the
start of § 6. Sections 3–5 provide a formal justification for the mathematical model:
the reader interested primarily in the application of this model could jump straight
to § 6.

3. Scaling analysis
The physical ideas discussed in § 2 and illustrated in figure 2 suggest the role of

multiple sublayers, with changes in the overall flow pattern depending on the dyna-
mical balance in each. We will determine the length scales of each of these regions
by considering different asymptotic limits of the governing equations.

The Reynolds-averaged Boussinesq boundary layer equations for thermally buoyant
flow next to a vertical isothermal plate are

∂v

∂y
+

∂w

∂z
= 0, (3.1)

v
∂w

∂y
+ w

∂w

∂z
= ν

∂2w

∂y2
+ gα(T − T∞) − ∂

∂y
(v′w′), (3.2)

v
∂T

∂y
+ w

∂T

∂z
= κ

∂2T

∂y2
− ∂

∂y
(v′T ′), (3.3)

where (v, w, T ) are the ensemble-averaged mean horizontal velocity, vertical velocity
and temperature, and (v′, w′, T ′) the corresponding turbulent fluctuations about the
mean state (see Gebhart et al. 1988, for example). The ensemble average of a quantity
ξ is denoted by ξ . The thermal expansion coefficient is denoted by α. These equations
are subject to boundary conditions

v = w = 0, T = Tw at y = 0, (3.4)

T → T∞, w, v′w′, v′T ′ → 0 as y → ∞, (3.5)

corresponding to a fixed isothermal surface and uniform conditions far from the wall.
We non-dimensionalize these equations by defining

(v, w) = (Vv̂, Wŵ), T − T∞ = �Tθ̂ , (y, z) = (Dŷ, Lẑ, ),

(v′, w′) = (V′v̂′, W′ŵ′), T ′ = T′θ̂ ′,

}
(3.6)

where (V, W, V′, W′) are characteristic velocity scales, (�T, T′) are temperature
and temperature fluctuation scales and (D, L) are length scales. Scaling of the
incompressibility relation (3.1) gives

V
D

∂v̂

∂ŷ
+

W
L

∂ŵ

∂ẑ
= 0, ⇒ V =

D
LW. (3.7)

This can be used to give scalings of the momentum equation

W2

L û · ∇̂ŵ = gα�Tθ̂ +
νW
D2

ŵŷŷ − V′W′

D ( ˆv′w′)ŷ , (3.8)
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and the heat equation

W�T
L û · ∇̂θ̂ =

κ�T
D2

θ̂ŷŷ − V′T′

D ( ˆv′θ ′)ŷ . (3.9)

The horizontal length scale D takes a different value δ, δi or δo in each region where
we have a different dynamical balance. If D satisfies

D
L � min

{(
WL

ν

)1/2

,

(
WL

κ

)1/2

,

(
κ�T

LV′T′

)
,

(
νW

LV′W′

)}
, (3.10)

then we have a laminar, conductive sublayer, where the dominant balances are given
by

ν
∂2w

∂y2
+ αg(T − T∞) ≈ 0, (3.11)

κ
∂2T

∂y2
≈ 0, (3.12)

with next-order corrections at O(D/L). The balances (3.11) and (3.12) maintain the
same form in the inner layer of each of the flow regimes. Viscous forces and also
possibly buoyancy forces are present in the momentum balance (3.11). The heat
conducted into the layer at y = 0 is conducted out of the layer at the opposite edge,
so this is a constant flux layer, consistent with the models of George & Capp (1979)
and Hölling & Herwig (2005).

Further away from the wall, D is larger, one of the conditions in (3.10) fails and a
new dynamical balance becomes important. The intermediate length scale δi is given
by the value of D that generates the first failure of (3.10). We will also determine
an outer length scale δo by considering the dominant dynamical balance in the outer
region of the flow.

The scalings δi and δo vary depending on whether the flow is laminar, turbulent
with a buoyant inner layer or turbulent with an inner layer driven by shear. The scales
also depend on the Prandtl number Pr = ν/κ . We first develop scalings for flows with
Pr � O(1), relevant to most geophysical applications (typically, Pr = 0.7 for air, and
Pr ≈ 10 for cold sea water), and then generalize them to small Prandtl number.

3.1. Scaling for laminar flow

As a consistency check, we use our scaling analysis to reproduce the length scales for
large Pr determined asymptotically by Kuiken (1968).

The turbulent fluctuation terms are absent for laminar flow, and so the viscous
and thermal boundary layer thicknesses represent the two relevant length scales. The
viscous boundary layer thickness is determined by the extent to which viscous shear
acts on the flow in the momentum equation. Similarly, the thermal boundary layer
thickness is determined by the length scale for conduction of heat. If Pr � 1 then
ν � κ , and viscous forces diffuse momentum over a length scale at least as large as
that of thermal diffusion. Hence, we expect the inner length scale δi to be determined
by the balance of advection and diffusion of heat in (3.9), giving

W�T
L ∼ κ�T

δ2
i

. (3.13)

The buoyancy force is only generated in regions where there is a temperature
difference from the ambient, and hence it is confined to the thermal boundary layer,
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as shown schematically in figure 1(a). The balance of buoyancy and viscous forces
in (3.8) gives

gα�T ∼ νW
δ2
i

. (3.14)

This can be used to eliminate W from (3.13) to give

δi

L ∼
(

gα�TL3

κν

)−1/4

≡ Ra−1/4
L . (3.15)

Outside the thermal boundary layer θ̂ � 1, and so the heat equation does not
provide any useful information. In addition, the buoyancy force no longer produces a
significant contribution to the flow, and hence the outer inertia balances the viscous
shear generated by the inner flow. The balance of inertia and viscous terms in (3.8)
gives the outer flow length scale δo from

W2

L ∼ νW
δ2
o

⇒ δo

L ∼ Pr1/2 δi

L ∝ Pr1/2Ra−1/4
L . (3.16)

These scalings match those derived asymptotically by Kuiken (1968). We expect them
to persist until the laminar flow becomes unstable when Raz ≈ 1.4 × 105Pr2 (as given
for large Pr by Hieber & Gebhart 1971) and the turbulent fluctuation terms begin to
grow.

3.2. Scaling for turbulent flow

The presence of turbulent fluctuations allows a new scaling balance to develop. For
large Prandtl number we expect the thermal boundary layer to be narrower than the
viscous boundary layer, so that δi will again be determined by the heat equation. Far
from the wall, where D/L � (κ/WL)1/2, conduction of heat is negligible and the
balance in (3.9) is between advection and turbulent fluctuations, giving

W�T
L ∼ V′T′

δo

. (3.17)

This is consistent with the experimental findings of Tsuji & Nagano (1988 b), who
observed an outer turbulent flow dominated by advection and turbulent transport of
heat, with turbulent fluctuations penetrating into an inner conductive region.

The intermediate heat balance (3.9) can then be written as

θ̂ŷŷ − δiV′T′

κ�T ( ˆv′θ ′)ŷ =
Wδ2

i

κL û · ∇̂θ̂ . (3.18)

Assuming that the turbulent fluctuations are of the same magnitude in both
intermediate and outer layers, given by the scaling (3.17), we see that

δiV′T′

κ�T ∼ Wδiδo

κL ⇒ δiV′T′

κ�T � Wδ2
i

κL (3.19)

and so, in the intermediate layer, turbulent fluctuations must balance conduction
at leading order, again consistent with experimental observation (Tsuji & Nagano
1988 b). The intermediate length scale therefore satisfies

Wδi

κ
∼ L

δo

. (3.20)

The outer layer width δo is determined by the outer momentum balance and
turbulent entrainment characteristics. The Reynolds stresses balance inertia in the
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outer region, giving

V′W′

δo

∼ W2

L . (3.21)

Incompressibility (3.7) yields

V
W ∼ V′

W′ ∼ δo

L , (3.22)

which can be combined with (3.21) to give

W′ ∼ W, V′ ∼ V. (3.23)

There are no other independent velocity scales in the outer flow (if the outer buoyancy
is important then W will be defined by a balance between inertia and buoyancy) and
so we must have

δo

L = E, (3.24)

for some constant E, possibly dependent on Pr . We will see later that this is consistent
with the entrainment hypothesis for turbulent flows suggested by Morton, Taylor &
Turner (1956). The intermediate layer width is then given by

Wδi

κ
∼ 1

E
= constant. (3.25)

This is consistent with the experimental observation of Kutateladze, Kirdyashkin &
Ivakin (1972), who found that at any given z the velocity maximum Wmax and its
distance from the plate δ1 satisfy

Re1Pr1/2 ≡ Wmaxδ1

(νκ)1/2
= constant. (3.26)

The condition (3.25) can take on two forms dependent on the velocity scale W,
which is determined by the dominant force balance in the intermediate layer.

3.2.1. Buoyancy-driven inner layer

When the inner region is driven by buoyancy there is a balance of viscous and
buoyancy forces in the intermediate layer,

gα�T ∼ νW
δ2
i

. (3.27)

Eliminating W from (3.25), we obtain

Raδi
≡ gα�Tδ3

i

κν
∼ 1

E
= constant. (3.28)

We might think of the inner viscous layer width being determined by a buoyant insta-
bility condition in terms of a local Rayleigh number based on δi . We have laminar
flow close to the wall for y � δi with an instability generating turbulent fluctuations
when y ∼ δi .

3.2.2. Shear-driven inner layer

We shall see from our model results that as the flow develops along the wall,
buoyancy spills from the inner to the outer layer. If the buoyancy in the outer layer
becomes sufficiently large, large outer velocities are generated which then exert a
shear force on the inner layer. If the shear force dominates the buoyancy from the
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inner layer, then W will scale with the outer velocity. Hence, we might interpret (3.25)
as an intermediate layer width determined by a shear instability condition, described
in terms of a local Reynolds number

Reδi
≡ Wδi

ν
∼ 1

EPr
= constant. (3.29)

The inner region develops as a shear flow driven by the imposed outer inertial velocity,
with turbulent fluctuations now controlled by shear instability. The shear criterion
replaces the buoyant instability criterion whenever

νW
δi

� g′δi. (3.30)

This all suggests the possibility of a hierarchy of instability conditions, as shown
schematically in figure 1. Initially there is laminar flow, with δi ∝ zRa−1/4

z growing
with height z until a buoyant instability is triggered at some critical value of Raδi

.
The flow then develops in this buoyant instability turbulent regime until the outer
velocity W grows sufficiently large for a shear instability mechanism to dominate at
some critical value of Reδi

.

3.3. Scalings for small Prandtl number

For Pr < 1, the viscous length scale is smaller than the thermal length scale, and so
the scalings differ slightly. In the outer flow, inertia balances the Reynolds stresses,

W2

L ∼ V′W′

δo

. (3.31)

The intermediate layer width is determined by the balance between viscous forces
and the Reynolds stresses, giving

νW
δ2
i

∼ V′W′

δi

(3.32)

and so the criterion (3.25) for the width of the intermediate layer is replaced by

Wδi

ν
∼ 1

E
. (3.33)

The derivation then continues as before, adjusted by the appropriate factor of Pr .

4. General governing equations for a two-layer flow
Guided by the preceding scaling analysis, we now develop appropriate governing

equations for an inner laminar conductive sublayer (y < δ) and an outer flow region
(y > δ), where δ is a specific numerical value at which flow properties are matched.

4.1. The laminar conductive sublayer

The scaling analysis suggests that the laminar conductive sublayer is described by
equations (3.1), (3.11) and (3.12), with heat transfer via conduction only, and viscous
and buoyancy forces dominating the momentum balance. Incompressibility is satisfied
by use of a streamfunction ψ , with v = −ψz and w = ψy . This yields the ordinary
differential equations

Tyy = 0, (4.1)

ψyyy +
αg

ν
(T − T∞) = 0, (4.2)
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ψ = ψy = 0, T = Tw at y = 0, (4.3)

νψyy =
τ

ρ∞
, −κTy =

q

ρ∞cp

at y = δ, (4.4)

for 0 <y <δ. The boundary conditions at y = 0 correspond to no slip and no normal
flow at the isothermal surface, and those at y = δ correspond to matching of shear
stress τ and heat flux q to the outer layer. The variables τ and q will be determined
later. This system has solution

T − T∞ = Tw − T∞ − q

ρ∞cpκ
y, (4.5)

ψ =
τ

ρ∞ν

y2

2
+

g′y2

ν

[
3δ − y

6
− q

ρ∞cpκ(Tw − T∞)

(
6δ2 − y2

24

)]
, (4.6)

and hence

w =
τ

ρ∞ν
y +

g′δy

ν

[
1 − y

2δ
− qδ

ρ∞cpκ(Tw − T∞)

(
1

2
− y2

6δ2

)]
. (4.7)

Note that the temperature gradient is independent of y, giving a constant heat flux
across the inner layer, i.e. qw = q . The inner velocity w can be driven by either the
buoyancy generated in the inner layer (the term involving g′), or the shear exerted by
the outer layer (the term involving τ ).

4.2. The outer turbulent region

Turbulent free-convection flows have been successfully modelled by the plume
equations of Morton et al. (1956), and a similar approach was used by Ellison &
Turner (1959) to model wall-bounded density currents. They integrated the turbulent
boundary layer equations over a cross-section, deriving ordinary differential equations
in z for the average mass, momentum and buoyancy fluxes. We follow a similar
approach, but instead integrate the boundary layer equations (3.1)–(3.3) over the
range δ � y < ∞. The boundary conditions for the outer turbulent section of the flow
are

v = v(δ, z), ρ∞νwy = τ (δ, z), −ρ∞cpκTy = q(δ, z), (4.8)

T → T∞, w, v′w′, v′T ′ → 0 as y → ∞, (4.9)

equivalent to uniform conditions at large distances from the wall.
Assuming that the mean flow is steady and that the ambient temperature field is

unstratified, we derive the integrated equations

d

dz

(∫ ∞

δ

w dy

)
= [−v]∞

δ , (4.10)

d

dz

(∫ ∞

δ

w2 dy

)
=

∫ ∞

δ

gα (T − T∞) dy − τ

ρ∞
, (4.11)

d

dz

(∫ ∞

δ

w(T − T∞) dy

)
=

q

ρ∞cp

, (4.12)

where

τ

ρ∞
=

[
ν
∂w

∂y
− v′w′

]
y=δ

(4.13)
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is the downward shear exerted by the inner viscous flow on the outer flow at y = δ,
and

q

ρ∞cp

=

[
−κ

∂T

∂y
+ v′T ′

]
y=δ

(4.14)

is the heat flux from the inner layer to the outer layer. We have assumed that the
variation of the sublayer width δ is much slower than the variation in outer flow
properties, that is,

dδ

dz
� 1

w

d

dz

(∫ ∞

δ

w dy

)
and

dδ

dz
� 1

wT

d

dz

(∫ ∞

δ

wT dy

)
, (4.15)

so that the limits of integration can be treated as effectively constant with respect to
the outer flow.

We can specify the volume, momentum and buoyancy fluxes in terms of an effective
mean plume width, b, vertical velocity, W , and temperature To, which are defined by

bW =

∫ ∞

δ

w dy, (4.16)

bW 2 =

∫ ∞

δ

w2 dy, (4.17)

bW (To − T∞) =

∫ ∞

δ

w(T − T∞) dy. (4.18)

Equations (4.10)–(4.12) are exact in the limit of slowly varying δ, but we must make
further assumptions to gain additional simplification, and to enforce a turbulence
closure for the turbulent fluctuations.

We approximate the buoyancy force as∫ ∞

δ

gα(T − T∞) dy = bgα(To − T∞). (4.19)

This relation is exact for ‘top-hat’ profiles which are uniform across the width of
the turbulent region. In addition, if the constant αg is modified by multiplication by
an appropriate constant shape factor, (4.19) is correct for any self-similar boundary
layer profiles (Linden 2000). We will also assume that v(δ) � v(∞), since horizontal
velocities will be small near to the impermeable wall.

Equations (4.5), (4.7) and (4.10)–(4.12) form a system of five equations for the
nine unknowns b, W , To, v(∞), τ , q , w(δ), T (δ) and δ. The inner layer width δ

is determined by the buoyant and shear instability criteria suggested by the scaling
analysis. We therefore require three more conditions in order to close the system. Note
that this is consistent with the need for a turbulence closure, as the Reynolds-averaged
Navier–Stokes equations introduce three new quantities v′, w′ and T ′.

5. Closure via scaling arguments
We use dimensional and scaling arguments to specify τ , q and v(∞) in terms of

the velocity and temperature scales in the inner and outer layers. The structure of the
boundary layer is illustrated schematically in figure 2.

For turbulent outer flow, incompressibility yields

V ∼ δo

LW ∼ EW, (5.1)
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given the scaling relation (3.24). Hence, we approximate the entrainment velocity as

v(∞) = −EW. (5.2)

This is consistent with the entrainment assumption of Morton et al. (1956). The use
of an entrainment constant was also justified for wall-bounded density currents by
the filling box experiments of Wells & Wettlaufer (2005). For laminar flow, (3.16)
instead gives

δo

L = E1Pr1/2Ra−1/4
z ⇒ v(∞) = −E1Pr1/2Ra−1/4

z W, (5.3)

where E1 is a constant of proportionality, and we have here identified L = z as the
vertical length scale.

The heat flux at y = δ is given by

q

ρ∞cp

=

[
−κ

∂T

∂y
+ v′T ′

]
y=δ

.

This is made up of two components: conductive and turbulent heat fluxes. The tem-
perature must undergo an adjustment from the inner conductive sublayer temperature
T (δ) to the outer temperature To over the region of width O(δi) where the intermediate
scaling is valid. Hence, we approximate the conductive heat flux over this region using

− κTy |
δ
= β1

κ [T (δ) − To]

δ
, (5.4)

for some constant β1. In the outer layer, the turbulent fluctuation heat flux scales as

(v′T ′)y ∼ vTy ∼ wTz ⇒ v′T ′ ∼ δo

LW [To − T (δ)] . (5.5)

We expect heat to flow from hot regions to colder regions, and so we set

v′T ′
∣∣
δ
= β2

δo

L |W | [T (δ) − To] , (5.6)

for some constant β2. This gives the total heat flux as

q

ρ∞cp

= β1

κ [T (δ) − To]

δ
+ β2

δo

L |W | [T (δ) − To] . (5.7)

The shear stress τ can be found by using similar scaling arguments. We have

τ

ρ∞
=

[
ν
∂w

∂y
− v′w′

]
y=δ

. (5.8)

The velocity must adjust from the sublayer value w(δ) to the outer value W over the
intermediate region of width O(δi). Hence we approximate

νwy |
δ
= γ1

ν [W − w(δ)]

δ
. (5.9)

The turbulent Reynolds stress contribution scales according to

(v′w′)y ∼ vwy ∼ wwz (5.10)

and so we let

v′w′|δ = γ2

δo

L|W | [W − w(δ)] , (5.11)
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where the absolute value has been chosen so that a faster-moving inner layer will
exert an upward shear on a slower-moving outer layer. Here γ1 and γ2 are arbitrary
constants. This gives a total shear stress

τ

ρ∞
= γ1

ν [W − w(δ)]

δ
+ γ2

δo

L |W | [W − w(δ)] . (5.12)

The same scalings apply in the laminar regime, provided the turbulent fluxes are
removed by setting β2 = γ2 = 0.

The model is completed by the specification of the extent of the conductive sublayer,
δ. Following the scaling analysis of § 3 we set

Raδ ≡ g′δ3

κν
= λ3Ra1/4

z , (5.13)

for laminar flow, with λ a constant of proportionality. When a critical value of Raz

is exceeded we have a transition to turbulent flow, and we set

Raδ = Rac for
W

ν

(
κνRac

g′

)1/3

< Rec, (5.14)

Reδ ≡ Wδ

ν
= Rec for

W

ν

(
κνRac

g′

)1/3

> Rec, (5.15)

corresponding to an inner-layer width determined by the buoyant instability criterion
until the outer velocity grows enough for the shear instability criterion to dominate.

6. Solutions of the closed model for outer flow
The complete set of governing equations are summarized in table 1.
We shall integrate the closed equations (6.3)–(6.14) to determine the evolution of the

flow, and compare the results to the experimental data of Tsuji & Nagano (1988a , b).
There are several unknown constants in the model. The constants β1 and γ1

represent laminar transport properties, β2 and γ2 represent corresponding turbulent
transport properties and E1 and E2 represent laminar and turbulent entrainment
strengths; λ, Rac and Rec fix the extent of the laminar conductive sublayer in each
regime, and control the transitions between the regimes. It might be thought at this
point that a theory with nine adjustable parameters is simply an elaborate scheme for
curve fitting. However we fix E1, β1 and γ1 in terms of λ by comparing our integrated
model results to the full analytical similarity solution of Kuiken (1968). We estimate
Rec by analogy with the instability of a standard Blasius boundary layer and we
estimate the remaining parameters from experimental profiles at a single value of z.
With the parameters fixed once and for all, the model is then validated in terms of
measured variations of heat flux and shear stress with z.

6.1. Solution for the laminar regime

For laminar flow, β2 = γ2 = 0 and equations (6.3)–(6.11) have a similarity solution in
which

b =
4

3
E1Pr1/2

(
κν

g′

)1/4

z1/4, (6.15)

W = W0Pr−1/2(g′z)1/2, (6.16)

To − T∞ = Θ0 (Tw − T∞) , (6.17)
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Inner flow (0 < y < δ):

w =
τy

ρ∞ν
+

g′δ2

ν

[
y

δ
− y2

2δ2
− qy

ρ∞cpκ(Tw − T∞)

(
1

2
− y2

6δ2

)]
, (6.1)

T − T∞ = Tw − T∞ − q

ρ∞cpκ
y. (6.2)

Outer flow (y > δ):

d

dz
[bW ] = −v(∞), (6.3)

d

dz
[bW 2] = αgb (To − T∞) − τ

ρ∞
(6.4)

d

dz
[bW (To − T∞)] =

q

ρ∞cp

, (6.5)

Matching:

v(∞) = − δo

LW, (6.6)

τ

ρ∞
= γ

ν

δ
[W − w(δ)] , (6.7)

q

ρ∞cp

= β
κ

δ
[T (δ) − To] , (6.8)

β =

(
β1 + β2

δo

L
δ |W |

κ

)
, γ =

(
γ1 + γ2

δo

L
δ |W |

ν

)
. (6.9)

Laminar scales:

δ =
λz

Ra1/4
z

, (6.10)

δo

L =
E1Pr1/2

Ra1/4
z

. (6.11)

Turbulent scales:

Raδ = Rac = λ3Ra
1/4
t ,

W

ν

(
κνRac

g′

)1/3

< Rec (6.12)

Wδ

ν
= Rec,

W

ν

(
κνRac

g′

)1/3

> Rec , (6.13)

δo

L = E. (6.14)

Asymptotic limits:

Buoyant instability 109 <Raz < 1016, Raδ = const. τ negligible,
q

ρ∞cp

= const.

Shear instability 1016 <Raz, Reδ =const.
τ

ρ∞
=Kf W |W | , q

ρ∞cp

= St |W | (Tw − To).

Table 1. Summary of the governing equations for inner and outer flow in both laminar and
turbulent regimes. In the inner layer inertia and advection are negligible and viscous flow is
driven by a linear temperature profile. The outer flow is described by equations for a wall
plume of width b with average outer velocity W and temperature To. The outer and inner flow
are coupled via the shear stress τ and heat flux q , which take different asymptotic forms in each
of the buoyant instability and shear instability regimes, while Kf and St are proportionality
constants.
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where W0 and Θ0 are dimensionless constants. Using these expressions and (6.1)–(6.11)
we obtain, after some algebra,

v(∞) = −E1W0

(
g′κν

z

)1/4

, (6.18)

τw

ρ∞
=

{
γ1

(1 + γ1)

[
W0

λ
− λ

(
1

6
+

1 + β1Θ0

3(1 + β1)

)]
+

λ(2 + β1 + β1Θ0)

2(1 + β1)

}
(g′3κνz)1/4, (6.19)

Nuz =
β1 (1 − Θ0)

(1 + β1)λ

(
g′z3

κν

)1/4

, (6.20)

where, from (6.4) and (6.5), W0 and Θ0 satisfy

5

3

E1W
2
0

Pr1/2
=

4

3
Pr1/2E1Θ0 − γ1

(1 + γ1)

[
W0

λ
− λ

(
1

6
+

1 + β1Θ0

3(1 + β1)

)]
, (6.21)

E1W0Θ0 =
β1

(1 + β1)λPr1/2
(1 − Θ0). (6.22)

The value of λ is rather arbitrary and has no significance for laminar flow. When
the flow is turbulent we estimate δ, the thickness of the laminar sublayer, by the
position at which the eddy heat flux is one-tenth of the heat flux conducted down the
mean temperature gradient and δi by the position at which the eddy and conducted
fluxes are of the same magnitude (see figure 3 below.) In our model, λ is then given
by the ratio δ/δi , as can be seen by comparing (3.15) with (6.10). In § 6.2 we find
that this gives λ= 0.4 for turbulent flow. We use this value to determine numerical
values of E1, β1 and γ1 by comparing the power law solution to full analytic similarity
solutions in two cases.

6.1.1. Large-Prandtl-number expansions

Kuiken (1968) derived the following asymptotic forms for the entrainment velocity,
wall shear and local Nusselt number for large Pr:

ve =

(
g′κν

4z

)1/4

3[0.43 + 0.02Pr−1/2 + 0.07Pr−1 + O(Pr−3/2)], (6.23)

τw

ρ∞
= (4g′3κνz)1/4[0.82 − 0.31Pr−1/2 + 0.22Pr−1 + O(Pr−3/2)], (6.24)

Nuz = Ra1/4
z [0.50 − 0.13Pr−1/2 + 0.05Pr−1 + O(Pr−3/2)]. (6.25)

These truncated expansions show good agreement with full numerical solutions,
with errors of less than 2 % for Pr as small as 2 (Kuiken 1968). Comparison of
these asymptotic expansions with our model predictions (6.18)–(6.20) generates the
expansions

E1 = 0.58 + 0.47Pr−1/2 + 0.08Pr−1 + O(Pr−3/2), (6.26)

β1 = 0.25 + 0.09Pr−1/2 + 0.03Pr−1 + O(Pr−3/2), (6.27)

γ1 = 0.53 − 0.44Pr−1/2 + 0.13Pr−1 + O(Pr−3/2), (6.28)

where we have set λ=0.4 (as given in § 6.2.)

6.1.2. Air with Pr =0.71

In order to compare with experimental data of Tsuji & Nagano (1988a), we will
also need parameter values for air with Pr = 0.71. The correlations measured by Tsuji



Natural convection adjacent to vertical isothermal surfaces 127

& Nagano (1988a) for laminar flow are

Nuz = 0.39Ra1/4
z , (6.29)

τw

ρ
= 0.95

(
Raz

Pr

)1/12

(g′ν)2/3, (6.30)

which are in excellent agreement with values obtained from a laminar similarity
solution with Pr = 0.71 (see Gebhart et al. 1988, for example.) The laminar similarity
solution also gives

ve = 3Pr1/4

(
g′κν

4z

)1/4

× 0.60. (6.31)

Matching (6.29)–(6.31) to the laminar power law solution (6.18)–(6.20) yields

E1 = 3.1, β1 = 0.34, γ1 = 2.0. (6.32)

The values of these parameters, determined from the analytic expressions for laminar
flow, are used throughout the model, including when the flow is turbulent.

6.2. Matching of model with experiment

The values of E2, β2, γ2, λ and Rac are estimated by comparison with the experimental
measurements of Tsuji & Nagano (1988 b). They used a hot-wire technique to conduct
detailed measurements of velocity, temperature and turbulent fluctuation profiles for
a boundary layer in air, with Pr = 0.71. This lies in the regime Pr = O(1); viscous
and thermal length scales are comparable, and so we might expect that the general
properties of the model for Pr � O(1) should still apply.

We first estimate δ and δi by looking at the balance of conductive and turbulent
heat fluxes provided by the experimental measurements. Typical near-wall profiles are
shown in figure 3. We estimate δi to be the distance from the wall where the turbulent
heat flux and mean conductive heat flux components are equal, i.e.

−κ
∂T

∂y

∣∣∣∣
y=δi

= v′T ′|y=δi
. (6.33)

Similarly, we estimate δ using the distance where the turbulent heat flux exceeds a
fraction ε = 0.1 of the mean conductive heat flux,

−εκ
∂T

∂y

∣∣∣∣
y=δ

= v′T ′|y=δ. (6.34)

The choice ε = 0.1 is somewhat arbitrary, as the inner-layer solution is derived for
the limit ε → 0. For small values (0.01 < ε < 0.2) the changes in predicted heat flux
and wall shear are relatively small under variation of ε (changes of <4 % and <16 %
over the entire integration range, respectively). For ε =0.5 the errors become larger
(changes of <9 % for heat flux and <25 % for wall shear), perhaps reflecting the
fact that the theory assumes ε � 1. The values of δ and δi can be obtained from the
intersections of the curves shown in figure 3. These values are used to calculate Raδ

and Raδi
as given in table 2. We then find values of b, W and To at four different

heights by using the profiles of w and T measured by Tsuji & Nagano (1988 b)
to approximate the numerical values of the integrals (4.16)–(4.18). The results are
presented in table 2.

We can use the measured value of δi to predict a critical value of the global
Rayleigh number Raz for transition between laminar and turbulent behaviour. We
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Raz b̂ Ŵ Θ Raδ Raδi
λ= δ/δi

1.10 × 1010 176 10.5 0.145 11.0 178 0.40
2.57 × 1010 232 11.7 0.128 9.2 171 0.38
5.99 × 1010 321 12.6 0.118 13.4 234 0.39
1.28 × 1011 357 14.7 0.109 9.8 139 0.41

Table 2. Estimates of b̂ = b(g′κ)1/3/ν, Ŵ = W/(g′κ)1/3, Θ =(To −T∞)/(Tw −T∞), Raδ , Raδi
, and

λ at four values of Raz using the experimental data of Tsuji & Nagano (1988 b). The values

of b̂, Ŵ and Θ are compared to the prediction of the model in Figure 6. The values of Raδ

and Raδi
are each of approximately constant size, consistent with the prediction (3.28).

δi
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Figure 3. Plot of near-wall heat flux component variations, using hot-wire measurement data
from the experiments of Tsuji & Nagano (1988 b). Measurements of the conductive heat flux
−κTy are joined by a long-dashed line and measurements of the turbulent heat flux v′T ′ are
joined by a solid line. The short-dashed line represents −0.1κTy . All heat flux components
are non-dimensionalized by (g′κ)1/3(Tw − T∞). The long-dashed and solid curves intersect at
the length scale δi according to the criterion (6.33), so that conducted and turbulent fluxes are
equal at this point. The length scale δ is given by the intersection of the short-dashed and
solid curves, when the turbulent flux exceeds a critical fraction of the conducted flux as given
by (6.34).

recall from (3.15) that the inner length scale for laminar flow satisfies δi ∼ zRa−1/4
z and

increases with height z, while (3.28) implies that δi is initially constant for turbulent
flow. We enforce the transition from laminar to turbulent flow models when these two
scales for δi coincide. The values in table 2 suggest that Raδi

≈ 180 for turbulent flow.
We can therefore predict the transition from laminar to turbulent behaviour when

Raz = Ra4
δi

≡ Ra t , (6.35)

where the constant

Ra t = 1804 ≈ 109. (6.36)

We will see in § 6.3 that this prediction is a good approximation to the observed
change from laminar behaviour in the experiments of Tsuji & Nagano (1988a), and
it is also consistent with other experimental studies (see Schlichting 1968, p. 303).
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We also note that the ratio λ= δ/δi is approximately constant, so that asserting
δ ∝ δi appears to be a decent approximation. We set

λ = 0.4, (6.37)

so that

Rac = λ3Raδi
= 11. (6.38)

The entrainment constant E2 is estimated by substituting measured values of v and
W into the entrainment law

v(∞) = −E2W. (6.39)

Measurements of v were available only for Raz = 6.36 × 1010, and so we take the
value of v at the boundary layer edge as an estimate for the entrainment velocity
v(∞), yielding an entrainment coefficient

E2 = 0.135. (6.40)

This is of a similar order of magnitude to the value E ≈ 0.1 found by Wells &
Wettlaufer (2005) for density currents flowing down a vertical wall, and is also con-
sistent with an extrapolation of the data of Ellison & Turner (1959) to vertical flows.

The values of β2 and γ2 were fixed by comparing the predicted heat flux qw and
wall shear τw , based on measured W and To values, to the observed values of qw and
τw at the single point Raz = 1.28 × 1011 where the turbulent flow is most developed.
Tsuji & Nagano (1988a) observe

Nuz = 605, τw/ρ(g′ν)1/3 = 6.04, at Raz = 1.28 × 1011. (6.41)

We then use (6.1)–(6.9) to give expressions for the predicted values of Nuz and τw in
terms of β1, γ1, E2, W , To, Rac, β2 and γ2. The parameters β1, γ1, E2, W , To, and Rac

are all known, and so matching predicted and observed values of qw and τw gives
two conditions for β2 and γ2, yielding

β2 = 0.023, γ2 = 0.063. (6.42)

The final condition is to select a value of Rec. There are no experimental data
in the shear instability regime, and so we compare to the critical Reynolds number
for instability of a Blasius boundary layer generated by forced flow past a flat plate.
The critical Reynolds number based on momentum thickness given by Schlichting
(1968) is Reδ1

= 420. We expect instability when Reδi
∼ Reδ1

, and so we use the critical
value

Reδ = Rec = 420λ. (6.43)

for comparison with Tsuji & Nagano (1988a , b) experimental data in air with Pr < 1.
Note however that the value of Rec might have some Prandtl number dependence for
Pr � 1 as can be seen by considering the scaling condition (3.29). The final parameter
values used are summarized in table 3.

6.3. Numerical integration for turbulent flow

With the parameter values in table 3, we integrated equations (6.3)–(6.14) numerically
using the Maple routine ‘dsolve rkf45’. The equations were integrated from
Raz =5 × 10−10 with initial conditions b(g′κ)1/3/ν = 0.735, W/(g′κ)1/3 = 0.012 and
(To − T∞)/(Tw − T∞) = 0.394 given by the laminar power law solution (6.15)–(6.17).
The numerical simulations show near-exact agreement with the power law solution
in the laminar regime. We switch to the buoyant instability regime when Raz = Ra t .
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Parameter λ Ra t = Ra4
δi

Rac Rec E1 β1 γ1 E2 β2 γ2

Value 0.4 109 11 420λ 3.1 0.34 2.0 0.135 0.023 0.063
Source (1) (1) Rac = λ3Raδi

(3) (2) (2) (2) (1) (1) (1)

Table 3. Summary of parameter values used in numerical calculations for Pr = 0.71. (1)
Estimate from the data of Tsuji & Nagano (1988 b). (2) Laminar similarity solution. (3) Blasius
boundary layer instability (Schlichting 1968). Note that these values have been obtained from
experimental results for air – it is possible they may have some Prandtl number dependence.

We generically find that W grows in the buoyant instability regime, so that the shear
instability criterion is always activated at large z. We emphasize that the choice of
parameters shown in table 3 only changes the length over which each regime runs and
the magnitude of each of the variables: it does not affect the functional form of the
z-dependence.

Figure 4 shows typical plots of Nusselt number and non-dimensional wall shear,
with the laminar scaling observed for Raz < 109, the turbulent buoyant instability
solution for 109 <Raz < 1.2 × 1016 and a transition to the shear instability regime for
Raz > 1.2 × 1016.

Figure 4(b) also shows the variation of τ and the outer buoyancy force gbα(To −T∞).
In the buoyant instability regime, τw is significantly larger than τ , so that g′δ � τ and
the buoyancy contribution from the inner conductive sublayer is important, consistent
with the ideas presented in the scaling analysis. Also, we see that τ approaches τw as
we enter the shear instability regime, consistent with the idea that the shear exerted
at y = δ dominates the sublayer buoyancy force in this limit, so that τ � g′δ.

In order to examine more closely the transition between laminar and turbulent
behaviour, figure 5 shows the variation of Nu with Raz on linear scales close to the
transition point. We recall that we have used measurements of the local turbulent
fluctuation profiles over the range 1010 < Raz < 1011 in order to estimate δi and
hence predict Ra t = Ra4

δi
= 109 according to (6.35). This prediction of Ra t compares

favourably with the deviation between laminar and turbulent behaviour of the Nusselt
number observed in the experiment. The computed value of Nu compares well with
the measured value, with all errors smaller than 18 %. This agreement is encouraging,
especially given that the prediction is made without any fitting parameters.

The z-variations of b, W and To are shown for laminar and buoyant instability
regimes in figure 6. The velocity W matches the experimental measurements well.
The outer-layer width b and temperature To show less satisfactory quantitative
agreement, but still capture the qualitative pattern of z-dependence. The disagreement
in temperature and plume width values might be explained by the observed presence
of an ambient temperature stratification in the experiments of Tsuji & Nagano
(1988a), which would alter the balance in the heat equation. The error in prediction
of plume width is also consistent with using too large an entrainment constant.
The value E = 0.135 is based on only one set of boundary layer profiles and is
slightly larger than previous estimates (e.g. Wells & Wettlaufer 2005 give E = 0.1).
There is also likely to be significant error involved in numerically approximating
the integrals (4.16)–(4.18) which extend over an infinite domain, and the assumption
of self-similarity of the profiles of the outer flow could also be another source of
error. The numerical solution approaches limits for each of the buoyant and shear
instability regimes, which are derived below.
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Figure 4. Numerical simulation of integrated profiles for the outer turbulent flow, plotted
against Raz on log scales. (a) Comparison of calculated Nusselt number to experimental
measurements, and shear instability large z asymptotic limit. (b) Comparison of calculated
non-dimensional wall shear τw/ρ(g′κ)2/3 to experimental observation, calculated outer
buoyancy force and calculated shear coupling between layers. Experimental data taken
from Tsuji & Nagano (1988a , b).

6.4. The constant heat flux limit with a buoyancy-driven sublayer

For moderate z, figure 4(b) shows that the shear coupling τ is significantly smaller
than the shear exerted at the wall τw , implying that buoyancy is dominant in driving
the conductive sublayer. In addition, τ is much smaller than the outer buoyancy,
and so we can neglect τ from the outer momentum balance (6.4). We also have
To − T∞ � T (δ) − T∞, and β2E2Wδ/κ � β1. Hence q is approximately constant at
leading order in (6.8), implying qw is constant, consistent with the experimental
correlation

Nu = 0.120Ra1/3
z (6.44)

observed by Tsuji & Nagano (1988a).
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Figure 5. Comparison of calculated Nusselt number to experimental measurements, both
plotted as a function of Raz on linear scales close to the transition point between laminar and
turbulent behaviour. Experimental data taken from Tsuji & Nagano (1988a , b).
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Figure 6. Plots of (a) outer plume width b(g′κ)1/3/ν, (b) velocity W/(g′κ)1/3 and (c) tempera-
ture (To − T∞)/(Tw − T∞). The numerical solution (solid curves) is compared with values
estimated from the experimental data of Tsuji & Nagano (1988 b) (symbols) and the buoyant
instability asymptotic limit (dashed curves.) The transition from laminar to turbulent flow
occurs at z(g′κ)1/3/ν = 1260.

Hence, we can approximate the dimensional governing equations (6.3)–(6.5) by

d

dz
(bW ) = E2W, (6.45)
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d

dz
(bW 2) = bgα(To − T∞), (6.46)

d

dz
[bW (To − T∞)] =

β1

(1 + β1)(PrRac)1/3
(g′κ)1/3(Tw − T∞), (6.47)

at leading order. This system has a power law solution

b =
3

4
E2z, (6.48)

W =

[
4β1

5E2(1 + β1)(Pr Rac)1/3

]1/3

(g′κ)1/9(g′z)1/3, (6.49)

To − T∞ =
5

3 Pr

[
4β1 Pr

5E2(1 + β1)(Pr Rac)1/3

]2/3

(Tw − T∞)

[
ν

(g′κ)1/3 z

]1/3

. (6.50)

Figure 6 compares the numerical and experimental results to these asymptotic limits
(6.48)–(6.50), after a virtual origin correction

z → z − 700ν/(g′κ)1/3 (6.51)

is made visually, to allow for the effects of starting the turbulent regime with non-
zero mass, momentum and buoyancy fluxes (such corrections are often required in
plume calculations, e.g. Linden 2000). The velocity and boundary layer width show
good agreement with the numerical solution, and the temperature shows a reasonable
qualitative fit. The solution above breaks down as W increases and significantly alters
the value of β in the heat balance, subsequently affecting the temperature. This
effect explains the larger discrepancy between the analytic limit and the numerical
temperature solutions.

As W increases, τ eventually becomes comparable to the O(g′δ) inner buoyant
forcing. The shear instability criterion (6.13) is met at Raz = 1.2 × 1016 and a new
flow regime develops. This would correspond to a height of 140 m in the Tsuji &
Nagano (1988a) experiments in air – beyond the scope of laboratory experiment but
of probable importance in a geophysical context.

6.5. The shear-driven sublayer limit

The moderate z-solution discussed above has constant inner buoyancy, while the
outer buoyancy continually grows due to the constant heat flux to the outer layer.
Hence the outer velocity W will grow and exert an increasing upward shear on the
conductive sublayer. Eventually W becomes sufficiently large that the inner layer
width is controlled by the shear instability criterion (6.13). In this limit, the inner
flow is effectively passive, acting only to provide a drag opposing the outer flow. We
obtain a large-z asymptotic limit

τ

ρ∞
= Kf W |W | , (6.52)

q

ρ∞cp

= St |W | (Tw − To), (6.53)

where we identify

Kf =
γ

(1 + γ )Rec

= 0.0046 (6.54)
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as the drag coefficient, and

St =
β

(1 + β)PrRec

= 0.0035 (6.55)

as the Stanton number. We have used the notation

β = β1 + β2E2PrRec, γ = γ1 + γ2E2Rec, (6.56)

here. These forms of scaling law are commonly used for forced convection in engine-
ering applications (see Incropera & De Witt 2002, for example.) We can think of the
outer buoyancy generating an outer flow strong enough for a forced convective flow
to develop in the inner conductive sublayer. The quadratic drag law (6.52) is also
commonly used for geophysical-scale models of wall-bounded density currents (see
Hughes & Griffiths 2006, for example) and has been applied to model the basal
drag of tidal currents by Taylor (1920). These typically use a drag coefficient
Kf = O(10−3), giving good order of magnitude agreement with (6.54). McPhee et al.
(1999) measured a Stanton number for turbulent forced flow under sea ice, and found
0.005 < St < 0.006, which again gives good order of magnitude agreement with our
estimated value. It is encouraging to note that our predictions of Kf and St , based on
laboratory-scale measurements of the turbulent flow properties, are consistent with
estimates from geophysical-scale data for forced flow.

Using (6.52) and (6.53), we obtain dimensional governing equations

d

dz
[bW ] = EW, (6.57)

d

dz
[bW 2] = αgb(To − T∞) − Kf W |W | , (6.58)

d

dz
[bW (To − T∞)] = St |W | (Tw − To), (6.59)

which admit a power law solution

b =
2E

3
z, (6.60)

W =

[
2E St

(4E + 3Kf )(St + E)

]1/2

(g′z)1/2, (6.61)

To − T∞ =
St

St + E
(Tw − T∞), (6.62)

q

ρ∞cp

=

[
2E3 St3

(4E + 3Kf )(St + E)3

]1/2

(g′z)1/2. (6.63)

The last of these conditions implies that

Nuz = A(PrRaz)
1/2, (6.64)

where the constant A takes the value

A = 3.8 × 10−4 (6.65)

for the parameter values relevant to the Tsuji & Nagano (1988a) experiments in air.
The analysis presented does not preclude the possibility that the constant A depends
on the Prandtl number Pr . However, if the entrainment coefficient E and the bulk
transfer coefficients St and Kf are all independent of Pr , then A is also independent
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of Pr and the result (6.64) is interestingly independent of viscosity. Figure 4 shows the
numerically calculated Nu approaching the limit (6.64) for large Raz. Note that this
correlation is valid only when the shear instability criterion (6.13) has been met, for

Raz > 1.2 × 1016 (6.66)

in the case of air. Hence, this correlation is beyond the scope of previous laboratory
experiments, but may be of importance on geophysical scales. The threshold value
and the constant A may have some dependence on Prandtl number, but we are
unable to determine the form of this dependence without further experimental data.

7. Conclusions
We have used scaling to show that a turbulent natural convection boundary layer

can be considered as comprising three distinct sublayers, with a near-wall laminar
conductive region, an intermediate viscous–turbulent layer and an outer inertial–
turbulent region. Two possible turbulent flow regimes are found, depending on the
force balance in the inner region of the flow. If the inner region is driven by its own
buoyancy we predict a constant wall heat flux, which recovers the scaling Nuz ∝ Ra1/3

z

previously observed in laboratory experiments. At larger scales, the buoyancy in the
outer part of the flow generates a strong outer velocity, which then exerts a shear to
drive the inner section of the flow. The dynamics of the flow is then well described by
plume-like equations for the outer velocity, incorporating heat transfer and drag laws
similar to those used for forced convection. This predicts the correlation Nuz ∝ Ra1/2

z ,
which gives rise to significantly larger predictions of heat transfer on geophysical
scales.

A unified model has been developed (see table 1) that can be used to determine the
evolution of the heat flux and wall shear with height, varying from a laminar state
through two different turbulent states. The constant parameters have been determined
for air (table 3) by comparison with an analytic solution of the laminar regime and
by fitting to data at a fixed height in the first turbulent regime. We might, however,
expect these parameters to have some Prandtl number dependence, so that the values
may differ slightly for water. The model is shown to make predictions in good
agreement with the observed variations of heat flux and wall shear in the laminar and
first turbulent regime. It also predicts a heat transfer coefficient (Stanton number)
and drag coefficient in the second turbulent regime which are in good agreement
with geophysical measurements of forced convection in water. This suggests that any
Prandtl number dependence may be relatively weak.

The transitions between the flow regimes are consistent with a hierarchy of
instabilities for the laminar sublayer. The flow is initially laminar before a criterion
consistent with a buoyant instability is attained, and turbulent fluctuations are
generated. This criterion accurately predicts the observed height of transition between
laminar and turbulent behaviour of the heat flux. The final turbulent regime is
predicted to occur when the Reynolds number exceeds a critical value consistent with
a shear instability dominating the inner flow. We find a corresponding variation in
the width of the laminar sublayer, which increases with height for laminar flow, is
constant in the buoyant instability regime and then decreases as height increases in
the shear instability regime.

The predicted variation in heat flux has important consequences for the melting
rate of vertical ice surfaces. For example, the melt rate of a polar ice shelf must
satisfy the Stefan condition, giving a melt rate proportional to heat flux. The melt
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rate decreases with height in the laminar regime, then attains a constant value in
the turbulent buoyant instability regime. Finally, on geophysical scales, we expect
the melt rate to increase with height when the shear-instability regime is attained.
This second turbulent regime is particularly relevant for consideration of solutal
convection next to ice in sea water, where the relevant Rayleigh numbers are typically
larger owing to the stronger solutal buoyancy and smaller solutal diffusivity D (for
example, g′z3/Dν ≈ 1020 for an ice surface submerged 100 m into sea water of salinity
35 psu.) The correlation Nuz ∝ Ra1/2

z in (6.64) then predicts a wall salt flux 10 times

larger than would be given using the correlation Nuz ∝ Ra1/3
z in (6.44). This difference

in salt transfer would have a significant influence on more complex models of ice
ablation, which may also need to account for the effects of two-component convection,
stratification, ambient currents and a non-planar ice interface. The ideas presented
here therefore require further experimental investigation at larger Raz to confirm or
discount the correlation Nuz ∝ Ra1/2

z , and its relevance to geophysical flows.
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Hölling, M. & Herwig, H. 2005 Asymptotic analysis of the near-wall region of turbulent natural
convection flows. J. Fluid Mech. 541, 383–397.

Hughes, G. O. & Griffiths, R. W. 2006 A simple convective model of the global overturning
circulation, including effects of entrainment into sinking regions. Ocean Modell. 12, 46–79.

Incropera, F. P. & De Witt, D. P. 2002 Fundamentals of Heat and Mass Transfer , 5th edn. Wiley.

Josberger, E. G. & Martin, S. 1981 A laboratory and theoretical study of the boundary layer
adjacent to a vertical melting ice wall in salt water. J. Fluid Mech. 111, 439–473.

Kuiken, H. K. 1968 An asymptotic solution for large Prandtl number free convection. J. Engng
Maths 2, 355–371.

Kutateladze, S. S., Kirdyashkin, A. G. & Ivakin, V. P. 1972 Turbulent natural convection on a
vertical plate and in a vertical layer. Intl J. Heat Mass Transfer 15, 193–202.

Linden, P. F. 2000 Perspectives in Fluid Mechanics , chapter 6: Convection in the environment,
pp. 303–321. Cambridge University Press.

McPhee, M. G., Kottmeier, C. & Morison, J. H. 1999 Ocean heat flux in the Central Weddell Sea
during winter. J. Phys. Oceanogr. 29, 1166–1179.

Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained
and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–23.

Nachtsheim, P. R. 1963 Stability of free-convection boundary-layer flows. Tech. Rep. NASA TN
D–2089.

Ostrach, S. 1952 An analysis of laminar free-convection flow and heat transfer about a flat plate
parallel to the direction of the generating body force. NACA-TN. 2635.

Papailiou, D. D. 1991 Turbulence models for natural convection flows along a vertical heated plane.
Tech. Rep. AGARD-A-R-291 4-1 to 4-5.



Natural convection adjacent to vertical isothermal surfaces 137

Ruckenstein, E. 1998 On the laminar and turbulent free convection heat transfer from a vertical
plate over the entire range of Prandtl numbers. Intl Commun. Heat Mass Transfer 25, 1009–
1018.

Schlichting, H. 1968 Boundary Layer Theory , 6th edn., p. 452 McGraw-Hill.

Taylor, G. I. 1920 Tidal friction in the Irish Sea. Philos. Trans. R. Soc. Lond. A 220, 1–33.

Tsuji, T. & Nagano, Y. 1988a Characteristics of a turbulent natural convection boundary layer
along a vertical flat plate. Intl J. Heat Mass Transfer 31, 1723–1734. (Data taken from
www.ercoftac.org.)

Tsuji, T. & Nagano, Y. 1988b Turbulence measurements in a natural convection boundary layer
along a vertical flat plate. Intl J. Heat Mass Transfer 31, 2101–2111. (Data taken from
www.ercoftac.org.)

Wells, M. G. & Wettlaufer, J. S. 2005 Two-dimensional density currents in a confined basin.
Geophys. Astrophys. Fluid Dyn. 99, 199–218.




